2,525 research outputs found

    Putting hydrodynamic interactions to work: tagged particle separation

    Full text link
    Separation of magnetically tagged cells is performed by attaching markers to a subset of cells in suspension and applying fields to pull from them in a variety of ways. The magnetic force is proportional to the field gradient, and the hydrodynamic interactions play only a passive, adverse role. Here we propose using a homogeneous rotating magnetic field only to make tagged particles rotate, and then performing the actual separation by means of hydrodynamic interactions, which thus play an active role. The method, which we explore here theoretically and by means of numerical simulations, lends itself naturally to sorting on large scales.Comment: Version accepted for publication - Europhysics Letter

    How to Track Protists in Three Dimensions

    Get PDF
    We present an apparatus optimized for tracking swimming microorganisms in the size range 10-1000 microns, in three dimensions (3D), far from surfaces, and with negligible background convective fluid motion. CCD cameras attached to two long working distance microscopes synchronously image the sample from two perpendicular directions, with narrowband dark-field or bright-field illumination chosen to avoid triggering a phototactic response. The images from the two cameras can be combined to yield 3D tracks of the organism. Using additional, highly directional broad-spectrum illumination with millisecond timing control the phototactic trajectories in 3D of organisms ranging from Chlamydomonas to Volvox can be studied in detail. Surface-mediated hydrodynamic interactions can also be investigated without convective interference. Minimal modifications to the apparatus allow for studies of chemotaxis and other taxes.Comment: 8 pages, 7 figure

    Role of host feeding niches and host refuges in habitat-related behaviour of Hyssopus pallidus (Hymenoptera: Eulophidae), a larval parasitoid of the codling moth

    Get PDF
    Parasitoid fitness depends largely on the capability to locate a host in an ecosystem. A parasitoid of a polyphagous host might not be able to find or to access the host in all its feeding niches. This study evaluated the niche selection of Hyssopus pallidus (Askew), a larval parasitoid of Cydia pomonella (Linnaeus), at the plant level with the goal of assessing its potential for biological control on different fruit crops throughout the plant cycle. Parasitoid behaviour during host location and reproduction rate were investigated on host caterpillars actively feeding on apple, pear, apricot or plum, and on caterpillars diapausing under the bark. Under laboratory conditions, the host searching behaviour of H. pallidus varied depending on the fruit species offered and the infestation of the fruits. Parasitoid females searched longer on apples than on other fruit species, and they searched longer on infested than on uninfested apples. Female wasps were able to locate and parasitize host caterpillars under the tree bark, and their behaviour did not vary with host accessibility. The numbers of caterpillars attacked by H. pallidus depended on the fruit species. The highest numbers of caterpillars were parasitized in apples and apricots. Their accessibility (i.e. position) within the fruit or on the branch did not influence parasitism success. Although hosts were parasitized throughout the season, the best results were achieved with early and late releases. Therefore, the host niche selection behaviour of H. pallidus most likely co-evolved with the host C. pomonella on apples, which renders H. pallidus a valuable biocontrol agent for successful release at different times of the season into apple orchard

    Rpv14, a new genetic source for Plasmopara viticola resistance conferred by Vitis cinerea

    Get PDF
    A biparental population segregating for downy mildew resistance was studied to identify resistance linked molecular markers. The progeny of 202 individuals from a cross of V3125 (susceptible breeding line) with 'Börner' (resistant rootstock) was phenotyped in the field in four seasons and by evaluating artificially infected leaf discs. QTL mapping revealed a major resistance locus on chromosome 5 that explained up to 17.4 % of the phenotypic variance. This new resistance locus was named Rpv14. It was transmitted from the male grandparent V. cinerea Arnold to 'Börner' and is associated with the marker GF05-13

    Towards Marker-Assisted Breeding for Black Rot Bunch Resistance: Identification of a Major QTL in the Grapevine Cultivar 'Merzling'

    Get PDF
    Black rot (BR), caused by Guignardia bidwellii, is an emergent fungal disease threatening viticulture and affecting several mildew-tolerant varieties. However, its genetic bases are not fully dissected yet. For this purpose, a segregating population derived from the cross 'Merzling' (hybrid, resistant) Ă— 'Teroldego' (V. vinifera, susceptible) was evaluated for BR resistance at the shoot and bunch level. The progeny was genotyped with the GrapeReSeq Illumina 20K SNPchip, and 7175 SNPs were combined with 194 SSRs to generate a high-density linkage map of 1677 cM. The QTL analysis based on shoot trials confirmed the previously identified Resistance to Guignardia bidwellii (Rgb)1 locus on chromosome 14, which explained up to 29.2% of the phenotypic variance, reducing the genomic interval from 2.4 to 0.7 Mb. Upstream of Rgb1, this study revealed a new QTL explaining up to 79.9% of the variance for bunch resistance, designated Rgb3. The physical region encompassing the two QTLs does not underlie annotated resistance (R)-genes. The Rgb1 locus resulted enriched in genes belonging to phloem dynamics and mitochondrial proton transfer, while Rgb3 presented a cluster of pathogenesis-related Germin-like protein genes, promoters of the programmed cell death. These outcomes suggest a strong involvement of mitochondrial oxidative burst and phloem occlusion in BR resistance mechanisms and provide new molecular tools for grapevine marker-assisted breeding

    High-density linkage mapping and QTL identification of black rot resistance towards marker-assisted breeding in grapevine

    Get PDF
    Today sustainability is a pivotal objective for viticulture, but it also presents us with new challenges. The decrease in treatments has in fact changed grapevine-pathogen interactions and dynamics causing the reaffirmation of diseases previously considered secondary. This is the case of black rot (BR, caused by Phyllosticta ampelicida), which is spreading with increasing pressure in warm-humid regions causing the loss of entire crops. The interinstitutional DAMAGE project between Edmund Mach Foundation (FEM) and the Institute for Grapevine Breeding (JKI-Geilweilerhof) aims to characterize BR resistance and to develop a toolkit of molecular markers (MM) to be routinely used in marker-assisted breeding for the introgression of this trait into mildew resistant backgrounds. The first fungal strain was isolated from infected leaves collected in Trentino-Italy and mixed with a second strain isolated in southwestern Germany. This inoculum has been used to screen a segregating population derived from 'Merzling' (V. rupestris Ă— V. lincecumii, mid-resistant) Ă— 'Teroldego' (V. vinifera, susceptible). BR resistance phenotyping consisted of a newly developed inoculation protocol on potted plants. The F1 individuals were genotyped with the Vitis18KSNP chip and a high-density genetic map has been constructed, following the integration of 190 informative SSRs. Moreover, explorative QTL analyzes have been conducted on phenotypic data of 2020 and 2021 seasons. Finally, upon the genomic interval characterization, new MM will be designed, tested and validated on various segregating populations with different genetic backgrounds
    • …
    corecore